Electronics, $1^{\text {st }}$ Year

$2^{\text {nd }}$ semester, 2016/2017
Sheet No. 5
Date issued: April-2016

1. A certain transistor has a β_{DC} of 200 . When the base current is $50 \mu \mathrm{~A}$, determine the collector current.
2. A BJT has $\alpha_{\mathrm{DC}}=0.99 ; \mathrm{I}_{\mathrm{B}}=25 \mu \mathrm{~A}$, and $\mathrm{I}_{\mathrm{CBO}}=200 \mathrm{nA}$. Find (a) the dc collector current, (b) the dc emitter current, and (c) the percentage error in emitter current when leakage current is neglected.
3. Determine $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{E}}, \mathrm{V}_{\mathrm{CE}}$, and V_{CB} in Figure 1 for the following values: $\mathrm{R}_{\mathrm{B}}=22 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=220 \Omega$, $V_{B B}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}$, and $\beta_{\mathrm{DC}}=90$.

Figure 1
4. Determine whether or not the transistor in Figure 1 is saturated for the following values: $\beta_{\mathrm{DC}}=125, \mathrm{~V}_{\mathrm{BB}}$ $=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{B}}=6.8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=180 \Omega$, and $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$. Assume $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=0.2 \mathrm{~V}$.
5. If $P_{\mathrm{D}(\max)}=1 \mathrm{~W}$, how much voltage is allowed from collector to emitter if the transistor is operating with $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$?
6. The transistor in Figure 2 has the following maximum ratings: $\mathrm{P}_{\mathrm{D}(\max)}=500 \mathrm{~mW}, \mathrm{~V}_{\mathrm{CE}(\max)}=25$ V , and $\mathrm{I}_{\mathrm{C}(\max)}=200 \mathrm{~mA}$. Determine the maximum value to which V_{CC} can be adjusted without exceeding a rating. Which rating would be exceeded first?

Figure 2
7. A transistor has a $\mathrm{P}_{\mathrm{D}(\max)}=5 \mathrm{~W}$ at $25^{\circ} \mathrm{C}$. The derating factor is $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. What is the $\mathrm{P}_{\mathrm{D}(\max)}$ at $70^{\circ} \mathrm{C}$?
8. A transistor connected as in Figure 3 has an $\mathrm{r}_{\mathrm{e}}=$ 20Ω. If R_{C} is 1200Ω, what is the voltage gain?

Figure 3

Benha university

Faculty of Engineering at Shoubra
Electrical Engineering Department
Electrical Power and Machines Section
Electronics, ${ }^{\text {st }}$ Year
$2^{\text {nd }}$ semester, 2016/2017
Sheet No. 5
Date issued: April-2016
9. Determine the minimum value of I_{B} required to saturate the transistor in Figure 4 if $\beta_{D C}$ is 125 and $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ is 0.2 V .

Figure 4

Design Problems

10. The transistor in the circuit of figure 5 has $\beta=100$ and exhibits a V_{BE} of 0.7 V at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$. Design the circuit so that a current of 2 mA flows through the collector and a voltage of +5 V appears at the collector.

Figure 5

