

- 1. A certain transistor has a β_{DC} of 200. When the base current is 50 μ A, determine the collector current.
- 2. A BJT has $\alpha_{DC}=0.99$; $I_B=25 \mu A$, and $I_{CBO}=200 nA$. Find (a) the dc collector current, (b) the dc emitter current, and (c) the percentage error in emitter current when leakage current is neglected.
- 3. Determine I_B, I_C, I_E, V_{CE}, and V_{CB} in Figure 1 for the following values: $R_B = 22 \text{ k}\Omega$, $R_C=220 \Omega$, $V_{BB}= 6 \text{ V}$, $V_{CC}= 9 \text{ V}$, and $\beta_{DC}=90$.

- 4. Determine whether or not the transistor in Figure 1 is saturated for the following values: $\beta_{DC} = 125$, $V_{BB} = 1.5 \text{ V}$, $R_B = 6.8 \text{ k}\Omega$, $R_C = 180 \Omega$, and $V_{CC} = 12 \text{ V}$. Assume $V_{CE(sat)} = 0.2 \text{ V}$.
- 5. If $P_{D(max)}=1$ W, how much voltage is allowed from collector to emitter if the transistor is operating with I_C=100 mA?
- 6. The transistor in Figure 2 has the following maximum ratings: $P_{D(max)} = 500 \text{ mW}, V_{CE(max)} = 25 \text{ V}$, and $I_{C(max)} = 200 \text{ mA}$. Determine the maximum value to which V_{CC} can be adjusted without exceeding a rating. Which rating would be exceeded first?

Figure 2

- 7. A transistor has a $P_{D(max)} = 5$ W at 25°C. The derating factor is 10 mW/°C. What is the $P_{D(max)}$ at 70°C?
- 8. A transistor connected as in Figure 3 has an $r'_e = 20 \Omega$. If R_C is 1200 Ω , what is the voltage gain?

Figure 3

9. Determine the minimum value of I_B required to

saturate the transistor in Figure 4 if β_{DC} is 125 and

Electronics, 1st Year 2nd semester, 2016/2017 Sheet No. 5 Date issued: April-2016

Figure 4

Design Problems

V_{CE(sat)} is 0.2 V.

10. The transistor in the circuit of figure 5 has $\beta = 100$ and exhibits a V_{BE} of 0.7 V at I_C = 1 mA. Design the circuit so that a current of 2 mA flows through the collector and a voltage of +5 V appears at the collector.

Figure 5